# UVA 10306 e-Coins(二维完全背包）

At the Department for Bills and Coins, an extension of today’s monetary system has newly been proposed, in order to make it fit the new economy better. A number of new so called e-coins will be produced, which, in addition to having a value in the normal
sense of today, also have an InfoTechnological value. The goal of this reform is, of course, to make justice to the economy of numerous dotcom companies which, despite the fact that they are low on money surely have a lot of IT inside. All
money of the old kind will keep its conventional value and get zero InfoTechnological value.

To successfully make value comparisons in the new system, something called the e-modulus is introduced. This is calculated asSQRT(X*X+Y*Y), where X and Y hold the sums of the conventional and InfoTechnological
values respectively. For instance, money with a conventional value of \$3 altogether and an InfoTechnological value of \$4 will get an e-modulus of \$5. Bear in mind that you have to calculate the sums of the
conventional and InfoTechnological values separately before you calculate the e-modulus of the money.

To simplify the move to e-currency, you are assigned to write a program that, given the e-modulus that shall be reached and a list of the different types of e-coins that are available, calculates the smallest amount of e-coins that are needed to exactly
match the e-modulus. There is no limit on how many e-coins of each type that may be used to match the given e-modulus.

Input

A line with the number of problems n (0<n<=100), followed by n times:

• A line with the integers m (0<m<=40) and S (0<S<=300), where m indicates the number of different e-coin types that exist in the problem, and S states the value
of the e-modulus that shall be matched exactly.
• m lines, each consisting of one pair of non-negative integers describing the value of an e-coin. The first number in the pair states the conventional value, and the second number holds the InfoTechnological value
of the coin.

When more than one number is present on a line, they will be separated by a space. Between each problem, there will be one blank line.

Output

The output consists of n lines. Each line contains either a single integer holding the number of coins necessary to reach the specified e-modulus S or, if S cannot be reached, the string "not possible".

Sample Input:

3
2 5
0 2
2 0

3 20
0 2
2 0
2 1

3 5
3 0
0 4
5 5

Sample Output:

not possible
10
2

2维背包：题意：两个属性x,y,求最少的数使(x1+x2+.xk)^2+(y1+y2+..yk)^2=s*s；

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
typedef long long LL;
using namespace std;
#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define CLEAR( a , x ) memset ( a , x , sizeof a )
const int INF=0x3f3f3f3f;
const int maxn=330;
int dp[maxn][maxn];
int w1[55],w2[55];
int t,n,s;
int main()
{
std::ios::sync_with_stdio(false);
cin>>t;
while(t–)
{
cin>>n>>s;
CLEAR(dp,INF);
dp[0][0]=0;
REP(i,n)
cin>>w1[i]>>w2[i];
REP(i,n)
{
REPF(j,w1[i],s)
{
REPF(k,w2[i],s)
{
if(dp[j-w1[i]][k-w2[i]]!=INF)
dp[j][k]=min(dp[j][k],dp[j-w1[i]][k-w2[i]]+1);
}
}
}
int ans=INF;
REPF(i,0,s)
{
REPF(j,0,s)
{
if(dp[i][j]!=INF&&i*i+j*j==s*s)
ans=min(ans,dp[i][j]);
}
}
if(ans!=INF) cout<<ans<<endl;
else cout<<"not possible"<<endl;
}
return 0;
}

1. 本站所有资源来源于用户上传和网络，如有侵权请邮件联系站长！
2. 分享目的仅供大家学习和交流，您必须在下载后24小时内删除！
3. 不得使用于非法商业用途，不得违反国家法律。否则后果自负！
4. 本站提供的源码、模板、插件等等其他资源，都不包含技术服务请大家谅解！
5. 如有链接无法下载、失效或广告，请联系管理员处理！
6. 本站资源售价只是赞助，收取费用仅维持本站的日常运营所需！
7. 本站源码并不保证全部能正常使用，仅供有技术基础的人学习研究，请谨慎下载
8. 如遇到加密压缩包，请使用WINRAR解压,如遇到无法解压的请联系管理员！